skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zima, John P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Well-mixed chemical reaction networks (CRNs) contain many distinct chemical species with copy numbers that fluctuate in correlated ways. While those correlations are typically monitored via Monte Carlo sampling of stochastic trajectories, there is interest in systematically approximating the joint distribution over the exponentially large number of possible microstates using tensor networks or tensor trains. We exploit the tensor network strategy to determine when the steady state of a seven-species gene toggle switch CRN model supports bistability as a function of two decomposition rates, both parameters of the kinetic model. We highlight how the tensor network solution captures the effects of stochastic fluctuations, going beyond mean field and indeed deviating meaningfully from a mean-field analysis. The work furthermore develops and demonstrates several technical advances that will allow steady-states of broad classes of CRNs to be computed in a manner conducive to parameter exploration. We show that the steady-state distributions can be computed via the ordinary density matrix renormalization group (DMRG) algorithm, despite having a non-Hermitian rate operator with a small spectral gap, we illustrate how that steady-state distribution can be efficiently projected to an order parameter that identifies bimodality, and we employ excited-state DMRG to calculate a relaxation timescale for the bistability. 
    more » « less
    Free, publicly-accessible full text available August 7, 2026